3.503 \(\int \frac{\sqrt{a-b x}}{x^{7/2}} \, dx\)

Optimal. Leaf size=46 \[ -\frac{4 b (a-b x)^{3/2}}{15 a^2 x^{3/2}}-\frac{2 (a-b x)^{3/2}}{5 a x^{5/2}} \]

[Out]

(-2*(a - b*x)^(3/2))/(5*a*x^(5/2)) - (4*b*(a - b*x)^(3/2))/(15*a^2*x^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0051817, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {45, 37} \[ -\frac{4 b (a-b x)^{3/2}}{15 a^2 x^{3/2}}-\frac{2 (a-b x)^{3/2}}{5 a x^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a - b*x]/x^(7/2),x]

[Out]

(-2*(a - b*x)^(3/2))/(5*a*x^(5/2)) - (4*b*(a - b*x)^(3/2))/(15*a^2*x^(3/2))

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*Simplify[m + n + 2])/((b*c - a*d)*(m + 1)), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin{align*} \int \frac{\sqrt{a-b x}}{x^{7/2}} \, dx &=-\frac{2 (a-b x)^{3/2}}{5 a x^{5/2}}+\frac{(2 b) \int \frac{\sqrt{a-b x}}{x^{5/2}} \, dx}{5 a}\\ &=-\frac{2 (a-b x)^{3/2}}{5 a x^{5/2}}-\frac{4 b (a-b x)^{3/2}}{15 a^2 x^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0086985, size = 30, normalized size = 0.65 \[ -\frac{2 (a-b x)^{3/2} (3 a+2 b x)}{15 a^2 x^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a - b*x]/x^(7/2),x]

[Out]

(-2*(a - b*x)^(3/2)*(3*a + 2*b*x))/(15*a^2*x^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 25, normalized size = 0.5 \begin{align*} -{\frac{4\,bx+6\,a}{15\,{a}^{2}} \left ( -bx+a \right ) ^{{\frac{3}{2}}}{x}^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-b*x+a)^(1/2)/x^(7/2),x)

[Out]

-2/15*(-b*x+a)^(3/2)*(2*b*x+3*a)/x^(5/2)/a^2

________________________________________________________________________________________

Maxima [A]  time = 1.05495, size = 45, normalized size = 0.98 \begin{align*} -\frac{2 \,{\left (\frac{5 \,{\left (-b x + a\right )}^{\frac{3}{2}} b}{x^{\frac{3}{2}}} + \frac{3 \,{\left (-b x + a\right )}^{\frac{5}{2}}}{x^{\frac{5}{2}}}\right )}}{15 \, a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x+a)^(1/2)/x^(7/2),x, algorithm="maxima")

[Out]

-2/15*(5*(-b*x + a)^(3/2)*b/x^(3/2) + 3*(-b*x + a)^(5/2)/x^(5/2))/a^2

________________________________________________________________________________________

Fricas [A]  time = 1.63756, size = 85, normalized size = 1.85 \begin{align*} \frac{2 \,{\left (2 \, b^{2} x^{2} + a b x - 3 \, a^{2}\right )} \sqrt{-b x + a}}{15 \, a^{2} x^{\frac{5}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x+a)^(1/2)/x^(7/2),x, algorithm="fricas")

[Out]

2/15*(2*b^2*x^2 + a*b*x - 3*a^2)*sqrt(-b*x + a)/(a^2*x^(5/2))

________________________________________________________________________________________

Sympy [A]  time = 20.0139, size = 245, normalized size = 5.33 \begin{align*} \begin{cases} - \frac{2 \sqrt{b} \sqrt{\frac{a}{b x} - 1}}{5 x^{2}} + \frac{2 b^{\frac{3}{2}} \sqrt{\frac{a}{b x} - 1}}{15 a x} + \frac{4 b^{\frac{5}{2}} \sqrt{\frac{a}{b x} - 1}}{15 a^{2}} & \text{for}\: \frac{\left |{a}\right |}{\left |{b}\right | \left |{x}\right |} > 1 \\\frac{6 i a^{3} b^{\frac{3}{2}} \sqrt{- \frac{a}{b x} + 1}}{x \left (- 15 a^{3} b x + 15 a^{2} b^{2} x^{2}\right )} - \frac{8 i a^{2} b^{\frac{5}{2}} \sqrt{- \frac{a}{b x} + 1}}{- 15 a^{3} b x + 15 a^{2} b^{2} x^{2}} - \frac{2 i a b^{\frac{7}{2}} x \sqrt{- \frac{a}{b x} + 1}}{- 15 a^{3} b x + 15 a^{2} b^{2} x^{2}} + \frac{4 i b^{\frac{9}{2}} x^{2} \sqrt{- \frac{a}{b x} + 1}}{- 15 a^{3} b x + 15 a^{2} b^{2} x^{2}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x+a)**(1/2)/x**(7/2),x)

[Out]

Piecewise((-2*sqrt(b)*sqrt(a/(b*x) - 1)/(5*x**2) + 2*b**(3/2)*sqrt(a/(b*x) - 1)/(15*a*x) + 4*b**(5/2)*sqrt(a/(
b*x) - 1)/(15*a**2), Abs(a)/(Abs(b)*Abs(x)) > 1), (6*I*a**3*b**(3/2)*sqrt(-a/(b*x) + 1)/(x*(-15*a**3*b*x + 15*
a**2*b**2*x**2)) - 8*I*a**2*b**(5/2)*sqrt(-a/(b*x) + 1)/(-15*a**3*b*x + 15*a**2*b**2*x**2) - 2*I*a*b**(7/2)*x*
sqrt(-a/(b*x) + 1)/(-15*a**3*b*x + 15*a**2*b**2*x**2) + 4*I*b**(9/2)*x**2*sqrt(-a/(b*x) + 1)/(-15*a**3*b*x + 1
5*a**2*b**2*x**2), True))

________________________________________________________________________________________

Giac [A]  time = 1.23375, size = 82, normalized size = 1.78 \begin{align*} -\frac{{\left (b x - a\right )} \sqrt{-b x + a} b{\left (\frac{2 \,{\left (b x - a\right )}}{a^{3} b^{4}} + \frac{5}{a^{2} b^{4}}\right )}}{480 \,{\left ({\left (b x - a\right )} b + a b\right )}^{\frac{5}{2}}{\left | b \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x+a)^(1/2)/x^(7/2),x, algorithm="giac")

[Out]

-1/480*(b*x - a)*sqrt(-b*x + a)*b*(2*(b*x - a)/(a^3*b^4) + 5/(a^2*b^4))/(((b*x - a)*b + a*b)^(5/2)*abs(b))